198 research outputs found

    Metaxa2 Database Builder: enabling taxonomic identification from metagenomic or metabarcoding data using any genetic marker

    Get PDF
    Motivation: Correct taxonomic identification of DNA sequences is central to studies of biodiversity using both shotgun metagenomic and metabarcoding approaches. However, no genetic marker gives sufficient performance across all the biological kingdoms, hampering studies of taxonomic diversity in many groups of organisms. This has led to the adoption of a range of genetic markers for DNA metabarcoding. While many taxonomic classification software tools can be re-trained on these genetic markers, they are often designed with assumptions that impair their utility on genes other than the SSU and LSU rRNA. Here, we present an update to Metaxa2 that enables the use of any genetic marker for taxonomic classification of metagenome and amplicon sequence data. Results: We evaluated the Metaxa2 Database Builder on 11 commonly used barcoding regions and found that while there are wide differences in performance between different genetic markers, our software performs satisfactorily provided that the input taxonomy and sequence data are of high quality. Availability and implementation: Freely available on the web as part of the Metaxa2 package at http://microbiology.se/software/metaxa2/. Supplementary information: Supplementary data are available at Bioinformatics online

    Maternal gut and breast milk microbiota affect infant gut antibiotic resistome and mobile genetic elements

    Get PDF
    The infant gut microbiota has a high abundance of antibiotic resistance genes (ARGs) compared to adults, even in the absence of antibiotic exposure. Here we study potential sources of infant gut ARGs by performing metagenomic sequencing of breast milk, as well as infant and maternal gut microbiomes. We find that fecal ARG and mobile genetic element (MGE) profiles of infants are more similar to those of their own mothers than to those of unrelated mothers. MGEs in mothers' breast milk are also shared with their own infants. Termination of breastfeeding and intrapartum antibiotic prophylaxis of mothers, which have the potential to affect microbial community composition, are associated with higher abundances of specific ARGs, the composition of which is largely shaped by bacterial phylogeny in the infant gut. Our results suggest that infants inherit the legacy of past antibiotic consumption of their mothers via transmission of genes, but microbiota composition still strongly impacts the overall resistance load

    Substrate-bound outward-open structure of a Na+-coupled sialic acid symporter reveals a new Na+ site

    Get PDF
    Many pathogenic bacteria utilise sialic acids as an energy source or use them as an external coating to evade immune detection. As such, bacteria that colonise sialylated environments deploy specific transporters to mediate import of scavenged sialic acids. Here, we report a substrate-bound 1.95 Å resolution structure and subsequent characterisation of SiaT, a sialic acid transporter from Proteus mirabilis. SiaT is a secondary active transporter of the sodium solute symporter (SSS) family, which use Na+ gradients to drive the uptake of extracellular substrates. SiaT adopts the LeuT-fold and is in an outward-open conformation in complex with the sialic acid N-acetylneuraminic acid and two Na+ ions. One Na+ binds to the conserved Na2 site, while the second Na+ binds to a new position, termed Na3, which is conserved in many SSS family members. Functional and molecular dynamics studies validate the substrate-binding site and demonstrate that both Na+ sites regulate N-acetylneuraminic acid transport

    Complete mitochondrial genomes and nuclear ribosomal RNA operons of two species of Diplostomum (Platyhelminthes: Trematoda): a molecular resource for taxonomy and molecular epidemiology of important fish pathogens

    Get PDF
    © 2015 Brabec et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http:// creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. The attached file is the published version of the article

    Critical knowledge gaps and research needs related to the environmental dimensions of antibiotic resistance

    Get PDF
    There is growing understanding that the environment plays an important role both in the transmission of antibiotic resistant pathogens and in their evolution. Accordingly, researchers and stakeholders world-wide seek to further explore the mechanisms and drivers involved, quantify risks and identify suitable interventions. There is a clear value in establishing research needs and coordinating efforts within and across nations in order to best tackle this global challenge. At an international workshop in late September 2017, scientists from 14 countries with expertise on the environmental dimensions of antibiotic resistance gathered to define critical knowledge gaps. Four key areas were identified where research is urgently needed: 1) the relative contributions of different sources of antibiotics and antibiotic resistant bacteria into the environment; 2) the role of the environment, and particularly anthropogenic inputs, in the evolution of resistance; 3) the overall human and animal health impacts caused by exposure to environmental resistant bacteria; and 4) the efficacy and feasibility of different technological, social, economic and behavioral interventions to mitigate environmental antibiotic resistance.(1)Peer reviewe

    Maximum levels of cross-contamination for 24 antimicrobial active substances in non-target feed. Part 6: Macrolides: tilmicosin, tylosin and tylvalosin

    Get PDF
    The specific concentrations of tilmicosin, tylosin and tylvalosin in non-target feed for food-producing animals, below which there would not be an effect on the emergence of, and/or selection for, resistance in bacteria relevant for human and animal health, as well as the specific antimicrobial concentrations in feed which have an effect in terms of growth promotion/increased yield, were assessed by EFSA in collaboration with EMA. Details of the methodology used for this assessment, associated data gaps and uncertainties, are presented in a separate document. To address antimicrobial resistance, the Feed Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the assessment was applied. However, due to the lack of data on the parameters required to calculate the FARSC, it was not possible to conclude the assessment until further experimental data become available. To address growth promotion, data from scientific publications obtained from an extensive literature review were used. Levels in feed that showed to have an effect on growth promotion/increased yield were reported for tilmicosin and tylosin, whilst for tylvalosin no suitable data for the assessment were available. It was recommended to carry out studies to generate the data that are required to fill the gaps which prevented the calculation of the FARSC for these three antimicrobials
    • …
    corecore